Spin State Selective Carbon-Detected HNCO with TROSY Optimization in all Dimensions and Double Echo-Antiecho Sensitivity Enhancement in Both Indirect Dimensions Kaifeng Hu, Beat Vögeli and G. Marius Clore* Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520 #### 1. Appendix There are a variety of conventions for the nomenclature employed for describing spin states, and the chemical shift and chemical shielding tensors (as well as the symbols σ and δ for chemical shift tensor and chemical shielding tensor) and their principal axes. To calculate spin state specific relaxation rates of single transition product operators, we have used a uniform definition of single transition product operators and the corresponding formulae to calculate their relaxation rates. The spherical product operators are defined as: $S_{\pm} = \frac{1}{\sqrt{2}}(S_x \pm iS_y)$. The single transition product operators are: $S_{\pm}I^{(\alpha)} = S_{\pm}(\frac{1}{2}E + I_z)$ with chemical shift frequency appearing at $\pm(\omega_S + \pi J_{IS})$ and $S_{\pm}I^{(\beta)} = S_{\pm}(\frac{1}{2}E - I_z)$ with chemical shift frequency appearing at $\pm(\omega_S - \pi J_{IS})$, where \pm corresponds to the spin order +1 or -1. It should be emphasized that ω_S can be positive or negative depending on the sign of the gyromagnetic ratio γ_S , and that J_{IS} can also be positive or negative. The relaxation rates for the single transition product operators are given as: $$R(S_{\pm}I^{(\alpha)}) = \overline{R_{S_{\pm}}^{I}} + \Gamma_{DD,CSA}^{S}$$ (A1) $$R(S_{z}I^{(\beta)}) = \overline{R_{S_{z}}^{I}} - \Gamma_{DD,CSA}^{S}$$ (A2) where $\overline{R_{S_{\pm}}^{I}}$ is the average transverse relaxation rate of spin S in-phase and anti-phase with respect to spin I, $\overline{R_{S_{\pm}}^{I}} = \frac{R(S_{\pm}) + R(2S_{\pm}I_{\pm})}{2}$, and $\Gamma_{DD,CSA}^{S}$ is the cross-correlated relaxation rate. $$\Gamma_{DD,CSA}^{S} = \Gamma_{DD(IS),CSA^{*}(S)} = -\frac{1}{6} \rho_{IS} \Delta \sigma_{S}^{*} \omega_{S} \{4J(0) + 3J(\omega_{S})\}$$ (A3) with the dipolar interaction amplitude $\rho_{IS} = \frac{\mu_0}{4\pi} \frac{\gamma_I \gamma_S}{\langle r_{IS}^2 \rangle} \frac{h}{2\pi}$, and $$\Delta \sigma_s^* = P_2(\cos \theta^{IS,XX\sigma_s}) \Delta \sigma_{S,XX} + P_2(\cos \theta^{IS,YY\sigma_s}) \Delta \sigma_{S,YY}$$ (A4) $\Delta\sigma_{S,XX} = \sigma_{S,ZZ} - \sigma_{S,XX}$, $\Delta\sigma_{S,YY} = \sigma_{S,ZZ} - \sigma_{S,YY}$, where $\sigma_{S,XX}$, $\sigma_{S,YY}$, and $\sigma_{S,ZZ}$ are the principal values of the traceless chemical shielding anisotropy (CSA*, where the * is used to differentiate from CSA, acronym for chemical shift anisotropy) tensors of spin S with $|\sigma_{S,ZZ}| > |\sigma_{S,XX}| > |\sigma_{S,YY}|$. $\theta^{IS,XX}\sigma_{S}$, $\theta^{IS,YY}\sigma_{S}$ are the angles between the internuclear IS vector and the principal axes XX and YY of the CSA* tensor of spin S. When the CSA* tensor is axially symmetric, that is $\sigma_{S,XX} = \sigma_{S,YY}$, on the basis of $$P_2(\cos\theta^{ISXX\sigma_S}) + P_2(\cos\theta^{ISYT\sigma_S}) + P_2(\cos\theta^{ISZZ\sigma_S}) = 0$$ (A5) then, $$\Delta \sigma_S^* = -\Delta \sigma_S P_2(\cos \theta^{IS ZZ \sigma_S}). \tag{A6}$$ Conventionally, for an approximately axially symmetric traceless tensor, the chemical shielding tensor anisotropy $\Delta \sigma_S$ is defined as: $\Delta \sigma_S = \sigma_{S,\parallel} - \sigma_{S,\perp} = \sigma_{S,ZZ} - (\sigma_{S,XX} + \sigma_{S,YY})/2$ (in fact $\Delta \sigma_S = \Delta \sigma_{S,XX} = \Delta \sigma_{S,XY}$ when $\sigma_{S,XX} = \sigma_{S,YY}$). For these conditions, the axis ZZ is usually described as the main axis of the tensor, and the angle between the IS vector and the tensor main axis, $\theta^{IS,ZZ\sigma_S}$ can be written as $\theta^{IS,\Delta\sigma_S}$. Thus, for an approximately axially symmetric traceless CSA* tensor, $$\Gamma_{DD,CSA}^{S} = \Gamma_{DD(IS),CSA^{*}(S)} = \frac{1}{6} \rho_{IS} \Delta \sigma_{S} P_{2}(\cos \theta^{IS,\Delta\sigma_{S}}) \omega_{S} \{4J(0) + 3J(\omega_{S})\}$$ (A7) ### 2. Carbonyl relaxation **Figure S1.** Theoretical comparison of the $R_{C-H^{(\alpha)}N^{(\beta)}}^{C^{\alpha}}$ relaxation rate of a doubly TROSY optimized carbonyl, as in the c-TROSY-HNCO experiment with the $R_{C-}^{H,N,C^{\alpha}}$ relaxation rate of a carbonyl under ¹⁵N decoupling, as in c-HNCO experiments as a function of the correlation time τ_c of the macromolecule. The relaxation rate of the carbonyl in the c-TROSY-HNCO is decreased by about 15% to that in the c-HNCO. Relaxation rates are calculated using Eqs. (A1) and (A2) using the parameters provided in Fig. 3 of the main text, for a spectrometer ¹H frequency of 800 MHz. ## 3. Comparison of S/N ratios for carbon-detect c-TROSY-HNCO and the conventional out-and-back ¹H-detect h-TROSY-HNCO. **Figure S2.** Histograms showing an experimental comparison of the distribution of signal-to-noise ratios for (A) the carbon-detected c-TROSY-HNCO and (B) the conventional out-and-back 1 H-detected TROSY-HNCO^{S1} experiments, recorded on a sample of 0.75 mM 15 N/ 13 C/ 2 H]/[Leu,Val]-methyl-protonated IIB^{Man} in 20 mM phosphate buffer, pH 6.5. (C) Histogram of the pairwise ratio of the signal-to-noise ratios for the h-TROSY-HNCO and c-TROSY-HNCO experiments. The total measurement time for both experiments was about 17.5 hours. For the c-TROSY-HNCO experiment (A) $24(t_1)$ x $40(t_2)$ x $2048(t_3)$ complex points were acquired with 16 scans per increment and maximum acquisition times of 7 ms (H_N), 16.44 ms (15 N) and 127.8 ms (13 C'). Linear prediction of size 36 was applied in the 1 H dimension, followed by the application of 90° shift sine-bell square apodization functions in all three dimensions prior to Fourier transformation. For the h-TROSY-HNCO experiment (B) $96(t_1)$ x $40(t_2)$ x $512(t_3)$ complex points were acquired with 4 scans per increment and maximum acquisition times of 39.7 ms (13 C'), 16.44ms (15 N) and 45.88ms (15 N) 15 N) and 45.88ms (15 N) 15 N) 15 N) and 45.88ms (15 N) 15 N) 15 N) and 45.88ms (15 N) 15 N) 15 N) and 45.88ms (15 N) 15 N) 15 N $^{$ #### Reference S1. Yang, D. W.; Venters, R. A.; Mueller, G. A.; Choy, W. Y.; Kay, L. E. *J. Biomol. NMR* **1999**, 14, 333-343.